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ABSTRACT

In this paper, we investigate accurate and e�cient time advancing methods for computational

acoustics, where non-dissipative and non-dispersive properties are of critical importance. Our anal-

ysis pertains to the application of Runge-Kutta methods to high-order �nite di�erence discretiza-

tion. In many CFD applications, multi-stage Runge-Kutta schemes have often been favored for

their low storage requirements and relatively large stability limits. For computing acoustic waves,

however, the stability consideration alone is not su�cient, since the Runge-Kutta schemes entail

both dissipation and dispersion errors. The time step is now limited by the tolerable dissipation

and dispersion errors in the computation. In the present paper, it is shown that if the traditional

Runge-Kutta schemes are used for time advancing in acoustic problems, time steps greatly smaller

than that allowed by the stability limit are necessary. Low-Dissipation and -Dispersion Runge-

Kutta (LDDRK) schemes are proposed, based on an optimization that minimizes the dissipation

and dispersion errors for wave propagation. Optimizations of both single-step and two-step alter-

nating schemes are considered. The proposed LDDRK schemes are remarkably more e�cient than

the classical Runge-Kutta schemes for acoustic computations. Moreover, low storage implementa-

tions of the optimized schemes are discussed. Special issues of implementing numerical boundary

conditions in the LDDRK schemes are also addressed.
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1. INTRODUCTION

Computational acoustics is a recently emerging tool for acoustic problems. In this approach,

the acoustic waves are computed directly from the governing equations of the compressible 
ows,

namely, the Euler equations or the Navier-Stokes equations. Special needs of numerical schemes for

computational acoustics have been indicated in recent works (eg. [9], [12]). It has been recognized

that numerical schemes that have minimal dispersion and dissipation errors are desired, since the

acoustic waves are non-dispersive and non-dissipative in their propagations. In this regard, it has

appeared that high-order schemes would be more suitable for computational acoustics than the

lower-order schemes since the former are usually less dispersive and less dissipative. Recently, high-

order spatial discretization schemes have gained considerable interests in computational acoustics,

among them the explicit DRP [12], implicit (or compact) [8,11] and ENO schemes[6]. In this

paper, we investigate accurate and e�cient time advancing schemes for computational acoustics.

In particular, the family of Runge-Kutta methods is considered. The present analysis pertains to

the application of Runge-Kutta methods to high-order �nite di�erence schemes.

In many CFD applications, popular time advancing schemes are the classical 3rd- and 4th-

order Runge-Kutta schemes because they provide relatively large stability limits [10]. For acoustic

calculations, however, the stability consideration alone is not su�cient, since the Runge-Kutta

schemes retail both dissipation and dispersion errors. The numerical solutions need to be time

accurate to resolve the wave propagations. In this paper, we show that when the classical Runge-

Kutta schemes are used in wave propagation problems using high-order spatial �nite di�erence,

time steps much smaller than that allowed by the stability limit are necessary in the long-time

integrations. This certainly undermines the e�ciency of the classical Runge-Kutta schemes.

Runge-Kutta schemes are multi-stage methods. Traditionally, the coe�cients of the Runge-

Kutta schemes are chosen such that the maximum possible order of accuracy is obtained for a given

number of stages. However, it will be shown that it is possible to choose the coe�cients of the

Runge-Kutta schemes so as to minimize the dissipation and dispersion errors for the propagating

waves, rather than to obtain the maximum possible formal order of accuracy. The optimization also

does not compromise the stability considerations. The optimized schemes will be referred to as Low-

Dissipation and -Dispersion Runge-Kutta (LDDRK) schemes. Consequently, remarkably larger

time steps can be used in the LDDRK schemes, which increases the e�ciency of the computation.

The optimized 4-, 5-, and 6-stage schemes are proposed in the present paper. In addition, optimized

two-step schemes are also given in which di�erent coe�cients are used in the alternating steps. It

is found that when two steps are coupled for optimization, the dispersion and dissipation errors

can be further reduced and higher formal order of accuracy be retained.

Optimization of numerical schemes for wave propagation problems has been conducted in sev-

eral recent studies (e.g., [8], [12], [16]). In [12], a Adam-Bashforth type multi-step time integration

scheme was optimized for acoustic calculations. In that work, the optimization was carried out

to preserve the numerical frequency in the development of Dispersion-Relation-Preserving �nite

di�erence schemes. In [16], a 6-stage Runge-Kutta scheme was optimized for the linear wave prop-

agations. Most recently, optimization of 5-stage Runge-Kutta schemes was considered in [8] for
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long-time integration, in which optimized coe�cients were given depending on the spectrum of

initial condition. There are, however, di�erences between the present and previous works in sev-

eral aspects. First, the optimization of time advancing is separate from the spatial discretization

schemes. The optimization is done once and for all. The proposed LDDRK schemes are appli-

cable to di�erent spatial discretization methods. Second, the optimization is carried out only for

the resolved frequencies/wavenumber in the spatial discretization. It will be shown that LDDRK

schemes preserves the frequency in the time integration and thus is dispersion relation preserving

in the sense of [12]. Third, optimizations of two coupled Runge-Kutta steps are considered for

the �rst time. Our results indicate that the two-step schemes o�er better properties and are more

e�cient than the optimized single-step schemes.

The advantages of Runge-Kutta methods also include low storage requirements in their imple-

mentations, as compared to Adam-Bashforth type multi-step methods. The low storage requirement

is important for computational acoustics applications where large memory use is expected. In the

past, it has been shown that the 3-stage 3rd-order scheme can be implemented with only two levels

of storages. Recently, the 4th-order scheme has been put into a two-level format using 5 stages in

[4]. We point out that, in light of recent studies, most of the LDDRK schemes proposed here can

be implemented with two levels of storages, since the number of stages are larger than the formal

order of accuracy retained in all schemes except one.

The rest of the paper is organized as follows. In section 2, results of Fourier analysis of

high-order �nite di�erence schemes are reviewed brie
y. Then, time advancing with Runge-Kutta

methods is described in section 3, in which the dissipation and dispersion errors are analyzed

using the notion of ampli�cation factor. Optimization process and LDDRK schemes are given in

section 4 and low storage implementations are discussed in section 5. Special issues of implementing

boundary conditions are discussed in section 6. Section 7 contains the conclusions.

2. FOURIER ANALYSIS OF HIGH-ORDER SPATIAL DISCRETIZATION

In this section, results of Fourier analysis of high-order �nite di�erence schemes are reviewed

brie
y [14]. For simplicity of discussions, we consider the convective wave equation

@u

@t
+ c

@u

@x
= 0 (2:1)

Let the spatial derivative be approximated by a central di�erence scheme with an uniform mesh of

spacing �x as �
@u

@x

�
j

=
1

�x

NX
`=�N

a`uj+` (2:2)

in which a central di�erence stencil has been used. In (2.2) uj represents the value of u at x = xj

and a`'s are the coe�cients of the di�erence scheme. Applying the spatial discretization (2.2) to

(2.1), a semi-discrete equation is obtained as

@uj
@t

+
c

�x

NX
`=�N

a`uj+` = 0
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at interior points. Using Fourier analysis, it is easy to show that the semi-discrete equation yields

@~u

@t
+ ick�~u = 0 (2:3)

where ~u is the spatial Fourier transform of u and k� is e�ective wavenumber :

k� =
�i
�x

NX
`=�N

a`e
i`k�x (2:4)

and k is the actual wavenumber. i =
p�1.

Thus k� of (2,4) is seen as an approximation to the actual wavenumber k. Moreover, we note

that the non-dimensionalized e�ective wavenumber k��x as a function of k�x is a property of the

�nite di�erence scheme, depending only on the coe�cients of the scheme, a`. (Similar analysis can

also be performed for implicit �nite di�erence schemes, such as the compact schemes [8, 11]). In

Figure 1, k��x as a function of k�x is plotted for several high-order spatial discretization schemes.

It is observed that k��x approximates k�x adequately for only a limited range of the long waves.

For convenience, the maximum resolvable wavenumber will be denoted by k�c . Using a criterion of

jk��x � k�xj < 0:005, a list of k�c�x values for high-order central di�erence schemes is given in

Table I. Often the \resolution" of spatial discretization is represented by the minimum points-per-

wavelength needed to reasonably resolve the wave. Here the points-per-wavelength value will be

computed as 2�=k�c�x.

TABLE I

Values of k�c�x and k�max�x for several high-order central di�erence schemes
of the spatial derivative. y indicates that the scheme has been optimized to have
maximum k�c�x.

Spatial Discretization k�c�x Resolution k�max�x

(points-per-wavelength)

5-point 4th-order [7] 0:7 9:0 1:4

7-point 4th-ordery [13] 1:16 5:4 1:65

9-point 6th-ordery 1:31 4:8 1:77

11-point 6th-ordery 1:48 4:2 1:9

5-point 6th-order compact [11] 1:36 4:6 2:0

Also listed in Table I are the values of maximum e�ective wavenumber k�max�x. Clearly, when

�nite di�erence schemes are used for the spatial discretization, only the long waves (i.e. for k � k�c)

are resolved within a given accuracy.
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3. TIME ADVANCING WITH RUNGE-KUTTA SCHEMES

We now consider the time advancing schemes. In particular, the Runge-Kutta methods will

be considered in the present paper. For convenience of discussions, a general explicit Runge-Kutta

scheme is described below. Let the time evolution equation be written as

@U

@t
= F (U) (3:1)

in which U represents the vector containing the solution values at spatial mesh points and the

operator F contains the discretization of spatial derivatives. For simplicity, we shall assume that

F does not depend on t explicitly.

An explicit, p-stage Runge-Kutta scheme advances the solution from time level t = tn to tn+�t

as follows :

U
n+1 = U

n +
pX

i=1

wiKi (3:2)

where

Ki = �tF (Un +
i�1X
j=1

�ijKj); i = 1; 2; :::; p (3:3)

In the above, wi and �ij are the constant coe�cients of the particular scheme.

The choice of the time step �t is an important issue in the Runge-Kutta schemes. One criterion

for the time step is that the time integration be stable. The time integration would be considered

as stable if the step size is limited by the stability boundary, usually from the \foot print" of the

particular Runge-Kutta scheme. For references, the stability \foot prints" of the classical 3rd- and

4th-order Runge-Kutta schemes are shown in Figure 2 in the complex ��t plane, where � is the

eigenvalue of the linearized operator of F (U) in (3.1).

To get time accurate solutions, however, the time step size �t is now limited by the tolerable

dissipation and dispersion errors, in addition to the stability considerations. Consider, for example,

the semi-discrete equation (2.3) of the convective wave equation (2.1) and suppose that the classical

4th-order Runge-Kutta schemes is used. Here, the eigenvalue is �i c k� and k� is real for central

di�erence schemes. Thus, from Figure 2, the 4th-order Runge-Kutta scheme should be stable if �t

is chosen such that

c k�max�t � 2:83

in which k�max is the maximum e�ective wavenumber of the spatial di�erence scheme. Figure 3

shows the computational results of the convective wave equation where several di�erent values of

�t have been used, i.e. c k�max�t = 2:83, 2:0, 1:0. In these calculations, the initial value when t = 0

is a Gaussian pro�le u0 = 0:5e� ln 2(x=3)2 and the wave speed c = 1. �x = 1. Numerical results at

t = 400 are shown. Since our purpose is to demonstrate the time integration schemes, a 9-point

central di�erence scheme has been used for the spatial discretization in the calculations presented.

The exact solution at t = 400 is a translated Gaussian pro�le centered at x = 400. The numerical

solutions, however, exhibit serious dissipation and dispersion errors for the �rst two cases. This

example shows that, to get time accurate solutions, time steps much smaller than that allowed by

the stability limit is necessary when the classical Runge-Kutta schemes are used.
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To analyze the numerical errors in the Runge-Kutta schemes, we consider the ampli�cation

factor of the schemes, i.e. the ratio of the numerical solution at time levels n+1 and n in the wave

number domain. From the semi-discrete equation (2.3), it is easy to �nd that the Runge-Kutta

scheme leads to

~Un+1
k = ~Un

k

0
@1 +

pX
j=1

cj (�i c k��t)j
1
A

in which cj are constants related to the coe�cients in (3.2) and (3.3). (The speci�c relations are

given later). ~Un
k is the spatial Fourier transform of Un. This yields a numerical ampli�cation

factor,

r =
~Un+1
k

~Un
k

= 1 +
pX

j=1

cj(�i�)j (3:4)

where � = c k��t. The exact ampli�cation factor, on the other hand, is found to be

re = e�i c k��t = e�i � (3:5)

The numerical ampli�cation factor r in (3.4) is seen as a polynomial approximation to the

exact factor e�i �. In fact, the order of a Runge-Kutta scheme is indicated by the number of leading

coe�cients in (3.4) that match the Taylor series expansion of e�i �. For instance, the classical

4-stage 4th-order Runge-Kutta scheme has the coe�cients c1 = 1, c2 = 1=2!, c3 = 1=3!, c4 = 1=4!.

Consequently, the maximum possible order of a p-stage scheme is p (at least in linear cases).

To compare the numerical and exact ampli�cation factors, we express the ratio r=re as

r

re
= jrje�i � (3:6)

In this expression, jrj represents the dissipation rate (or the dissipation error) where the exact value

should be 1, and � represents the phase error (or the dispersion error) where the exact value should

be 0. It is easily seen from (3.4) that jrj and � are functions of ck��t. Furthermore, they are

properties of the given Runge-Kutta scheme and depends only on the coe�cients of the scheme.

The dissipation rate jrj and the dispersion error � of the classical 3rd- and 4th-order Runge-Kutta

scheme are plotted in Figure 4. Only the values for positive ck��t are shown, since jrj and � are

even and odd functions, respectively. Using the criteria, say, that
���jrj � 1

��� � 0:001 and j�j � 0:001,

it is found that the numerical solution would be time accurate for c k��t � 0:5 and c k��t � 0:67

in the 3rd- and 4th-order Runge-Kutta schemes, respectively.

Following above analysis, we let R denote the stability limit of c k��t, i.e. the scheme is stable

for c k��t � R, and L denote the accuracy limit, i.e. the solution is time accurate for c k��t �
L. Then, it is necessary for the time advancing scheme to be both stable for all wavenumbers

and accurate for resolved wavenumbers. These considerations lead to the following conditions of

determining �t for the convective wave equation :

c k�c �t � L (3:7a)

c k�max�t � R (3:7b)
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That is, in non-dimensional terms,

c
�t

�x
= min

�
L

k�c �x
;

R

k�max�x

�
(3:8)

Thus, the accuracy limit would give a smaller time step whenever

L

R
<

k�c
k�max

The above is usually true for the classical Runge-Kutta schemes with the high-order �nite di�erences

in which k�c is not too much smaller than k�max (Table I).

4. LOW-DISSIPATION AND -DISPERSION RUNGE-KUTTA SCHEMES

4.1 Minimizing the dissipation and dispersion errors

To optimize the Runge-Kutta schemes, we modify the coe�cients cj in the ampli�cation factor

(3.4) such that the dissipation and the dispersion errors are minimized and the accuracy limit L

is extended as much as possible. This is in contrast to the traditional choice of cj that maximizes

the possible order of accuracy. The optimized schemes will be referred to as Low-Dissipation and

-Dispersion Runge-Kutta (LDDRK) schemes. In this paper, the optimization is carried out by

minimizing jr � rej2 as a function of ck��t. It can be shown that this minimizes the total of the

dissipation and dispersion errors (see Appendix A). In addition, certain formal order of accuracy

of the scheme is retained in the optimization process. Thus, the coe�cients cj will be determined,

initially, such that the following integral is a minimum :

Z �

0

������1 +
pX

j=1

cj(�i�)j � e�i �

������
2

d� = MIN (4:1)

where � speci�es the range of c k��t in the optimization. This leads to a simple constrained

minimum problem which yields a linear system for cj. However, since the stability condition

jrj � 1 is not imposed explicitly in minimizing (4.1), the initial optimized schemes are found to

be weakly unstable (1 < jrj < 1:001) for some narrow region of the wavenumber. The coe�cients,

then, will be modi�ed slightly by a perturbation technique so that jrj � 1 is satis�ed within the

given stability limit. Once the values of cj have been determined, the actual coe�cients of the

Runge-Kutta schemes, i.e. wi and �ij, can be found accordingly. Speci�c implementation will be

discussed in section 5. This optimization process can also be viewed as preserving the frequency

(Appendix B) and thus is dispersion relation preserving in the sense of [12].

Optimizations of 4-, 5-, and 6-stage schemes have been carried out. At least a 2nd order

accuracy has been retained, i.e., c1 = 1 and c2 = 1=2 for all the schemes and 4th-order accuracy has

been retained in the optimized 6-stage schemes. The optimized coe�cients are given in Table II.

Also listed are the respective accuracy and stability limits of the optimized schemes. The accuracy

limits L are determined using the criteria
���jrj � 1

��� � 0:001 and j�j � 0:001. The value of � used

in (4.1) has been varied such that the accuracy limit L is as large as possible. The dissipation and

dispersion errors of the optimized schemes are plotted in Figure 5. Plotted in dotted lines are the
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errors of un-optimized scheme in which the coe�cients cj equal to the that of the Taylor expansion

of e�i�.

TABLE II

Optimized coe�cients for the ampli�cation factor (3.4). L and R are the accu-

racy and stability limits, respectively. All the schemes have at least second-order

formal accuracy , i.e. c1 = 1, c2 = 1=2.

Stages c3 c4 c5 c6 L R

4 0.162997 0.0407574 | | 0.85 2.85

5 0.166558 0.0395041 0.00781071 | 1.35 3.54

6 1/3! 1/4! 0.00781005 0.00132141 1.75 1.75

Table II shows that the optimized 5-stage scheme can be more e�cient than the 4-stage scheme,

as the increase in the accuracy limit out-weights the cost of the additional stage incurred. On the

other hand, the optimized 6-stage scheme has a smaller stability limit than the 5-stage scheme,

although the accuracy limit is larger. This scheme, perhaps, is more useful for spectral methods

than �nite di�erence methods [3].

4.2 Optimized two-step alternating schemes

In two-step alternating schemes, we consider schemes in which di�erent coe�cients are em-

ployed in the alternating steps. The advantages of the alternating schemes are that, when two

steps are combined in the optimization, the dispersion and dispersion errors can be further reduced

and higher order of accuracy can be maintained.

Let the ampli�cation factors of the �rst and the second step be

r1 = 1 +
p1X
j=1

aj(�i�)j (4:2a)

r2 = 1 +
p2X
j=1

bj(�i�)j (4:2b)

where p1 and p2 are the number of stages of the two steps, respectively. Accordingly, the scheme

will be denoted as p1-p2 scheme below. It is easy to see that the ampli�cation factor for these two

steps combined equals to r1r2. The exact ampli�cation factor, on the other hand, is r2e. Again, we

now choose the coe�cients aj and bj such that jr1r2� r2e j is minimized. That is, the coe�cients in
the alternating steps will be determined such that the following integral is minimum

Z �

0

������
0
@1 +

p1X
j=1

aj(�i�)j
1
A
0
@1 +

p2X
j=1

bj(�i�)j
1
A � e�2i�

������
2

d� = MIN (4:3)
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Optimized coe�cients for 4-6 and 5-6 schemes are given in Table III. In both schemes, a 4th-

order accuracy has been maintained for each step. Thus, the �rst step in 4-6 scheme is actually

the same as the traditional 4-stage 4th-order Runge-Kutta scheme. The dissipation and dispersion

errors are shown in Figure 6 and the stability foot prints are given in Figure 7. For e�ciency, we

note that the computational cost of the 4-6 alternating scheme is comparable to that of 5-stage

schemes while the 5-6 scheme is slightly higher. However, the 4-6 and 5-6 schemes are 4th-order

accurate whereas the optimized single-step 5-stage scheme is 2nd order.

TABLE III

Optimized coe�cients for the 4-6 and 5-6 schemes of (4.2). 4th-order accuracy
has been retained in each step, i.e. a1 = b1 = 1, a2 = b2 = 1=2, a3 = b3 = 1=6,
a4 = b4 = 1=24. L and R are the accuracy and stability limits of each step.

Scheme Step Stages a5=b5 a6=b6 L R

4-6 1 4 | | 1.64 2.52

2 6 0.0162098 0.00286365

5-6 1 5 0.00361050 | 2.00 2.85

2 6 0.0121101 0.00285919

Numerical examples of the optimized schemes are shown in Figure 8, with the same Gaussian

initial condition as Figure 5. By and large, it has been observed that the optimized two-step

alternating schemes appear to be more e�cient than the single-step optimized schemes.

5. LOW STORAGE IMPLEMENTATION OF LDDRK SCHEMES

In this section, we study the implementation of the LDDRK schemes. Particularly, we will be

interested in the implementations that require low memory storages. The low storage requirement

is important in computational acoustics applications where large memory use is expected, especially

for 3-D problems. In the past, it has been shown that the 3-stage 3rd-order Runge-Kutta scheme can

be cast in a two level format but not the 4-stage 4th-order schemes [15]. Recently a 4th-order Runge-

Kutta scheme has been designed with two levels of storages using 5 stages in [4]. In light of the

recent studies, we note that it is possible to implement most of the LDDRK schemes proposed here

with two levels of storages, since the number of stages are larger than the formal order of accuracy

retained in all schemes except one (namely 4-6 scheme). The particular implementation of the

two-level format, however, will be given elsewhere. In what follows, a low storage implementation

of LDDRK schemes for linear problems is outlined.

For linear problems, the following implementation is convenient for a p-stage scheme. Let the

time evolution equation be given as (3.1). Then,

1. For i = 1 . . . p, compute (with ��1 = 0)

Ki = �t F (Un + ��iKi�1) (5:1b)
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2. Then,

U
n+1 = U

n +Kp (5:1c)

The coe�cients ��i in (5.1) are related to the coe�cients cj of the ampli�cation factor of LDDRK

schemes as follows :
c2 = ��p

c3 = ��p ��p�1

::::::

cp = ��p ��p�1 ::: ��2

(5:2)

The above scheme can also be applied to non-linear problems, but it will be formally second-order

in general [3,10]. This implementation requires at most three levels of storage.

6. IMPLEMENTATION OF BOUNDARY CONDITIONS

Numerical boundary condition is another important issue in computational acoustics. The

results of acoustic calculations are particularly sensitive to the errors at the boundary. In this

section, the implementations of boundary conditions in Runge-Kutta schemes are discussed. In

addition, the implementations of solid wall and radiation boundary conditions are described with

an example using the linearized Euler equations.

Often the physical boundary conditions are given in the form of di�erential equations, such as

the characteristics-based boundary conditions or the boundary conditions based on the asymptotic

forms of the far �eld solutions [1, 12]. When boundary conditions are coupled with governing

equations of the interior grids, it is not immediately clear as to how the Ki's in the Runge-Kutta

time integration process should be computed at the boundaries.

For simplicity, we assume that the problem is linear or can be linearized at the boundaries.

To examine the situation around the boundary grid points, we note that Ki is related to the time

derivatives of the solution U, rather than being some \intermediate" value of the solution [5].

Speci�cally, for the iterations of (5.1) for linear problems, we have

K1 = �t
@U

@t

K2 = �t
@U

@t
+ ��2�t

2@
2U

@t2

K3 = �t
@U

@t
+ ��3�t

2@
2
U

@t2
+ ��3 ��2�t

3@
3
U

@t3

K4 = �t
@U

@t
+ ��4�t

2@
2
U

@t2
+ ��4 ��3�t

3@
3
U

@t3
+ ��4 ��3 ��2�t

4@
4
U

@t4

K5 = �t
@U

@t
+ ��5�t

2@
2
U

@t2
+ ��5 ��4�t

3@
3
U

@t3
+ ��5 ��4 ��3�t

4@
4
U

@t4
+ ��5 ��4 ��3 ��2�t

5@
5
U

@t5

K6 = �t
@U

@t
+ ��6�t

2@
2U

@t2
+ ��6 ��5�t

3@
3U

@t3
+ ��6 ��5 ��4�t

4@
4U

@t4
+ ��6 ��5 ��4 ��3�t

5@
5U

@t5
+ ��6 ��5 ��4 ��3 ��2�t

6@
6U

@t6

� � � � � � � � �
(6:1)

10



The above relations are exact. Thus, it becomes clear that, if U is known at the boundary,

Ki at the boundary points should be computed according to (6.1). On the other hand, when the

boundary condition is given in the form of di�erential equations, Ki at the boundary points should

be computed from the boundary equations using the same Runge-Kutta scheme as at the interior

points.

We now discuss the implementation of boundary conditions at the solid walls and the far �eld

for linear acoustic problems. To this end, we consider linearized Euler equation

@U

@t
+
@E

@x
+
@F

@y
= 0 (6:2)

where

U =

0
BB@
�
u
v
p

1
CCA ; E =

0
BB@
Mx�+ u
Mxu+ p
Mxv

Mxp+ u

1
CCA ; F =

0
BB@
My�+ v
Myu

Myv + p
Myp+ v

1
CCA

In the above, �, u, v and p are the density, velocities and pressure, respectively. Mx and My are

Mach number of the mean 
ow in the x and y directions. In what follows, we consider an example of

implementing the solid wall and radiation boundary conditions in which the re
ection of an initial

acoustic pulse from the solid wall at y = 0 is simulated. In this example, we take Mx = My = 0.

6.1 Solid wall boundary conditions

Physically, the boundary condition at solid wall is that the normal velocity equals to zero for

inviscid 
ows. That is, v = 0 at y = 0. Then, from (6.1), since all the time derivatives of v are also

zero, the numerical implementation in the Runge-Kutta schemes should be

Ki = 0 for the normal velocity components (6:3)

6.2 Radiation boundary conditions

The radiation boundary conditions are often derived in the form of di�erential equations. We

consider a radiation boundary condition based on far �eld asymptotic solutions [1, 12]

@U

@t
= �@U

@r
� 1

2r
U (6:4)

where r is the radial variable.

To couple the radiation condition with the Euler equation in the interior region, (6.4) is inte-

grated for the boundary grids (in the present calculation 3 points inward from the boundary) using

the same Runge-Kutta time integration scheme as in the interior. The spatial derivatives, however,

have to be computed using one sided di�erences for boundary points where central di�erence stencil

can not apply. Speci�cally, the explicit 5-point boundary closure scheme of [7] have been used in

the present calculation.
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Computational results are shown in Figure 9 and 10. The initial condition is

� = p = e� ln 2 x
2+(y�25)2

9 and u = v = 0

with �x = �y = 1 in non-dimensional coordinates. Shown in the Figure 9 are pressure contours

at time t = 0, 50, 100 and 150. The spatial discretization is the 7-point central di�erence scheme

[13] and time integration is the 5-6 LDDRK scheme with �t = 1:25. Comparisons with the exact

solution are shown in Figure 10 for the pressure pro�le along x = 0. Very good agreements are

found.

7. CONCLUSIONS

An analysis of dissipation and dispersion properties of Runge-Kutta time integration meth-

ods has been presented for applications with high-order �nite di�erence spatial discretization.

Low-Dissipation and -Dispersion Runge-Kutta (LDDRK) schemes are proposed, based on an op-

timization that minimizes the dissipation and dispersion errors for wave propagations. Numerical

examples are presented that demonstrate the e�ciency and accuracy of the proposed schemes.

The importance of dispersion relations of the �nite di�erence schemes have been emphasized

in recent works of computational acoustics. The proposed condition of determining the time step,

(3.8), is based on the wave propagation properties of the the numerical schemes. It takes account

of both the spatial and temporal discretizations. This ensures the correct wave propagations of

resolved waves and, thus, improves the robustness of the computation.

APPENDIX A: DISSIPATION AND DISPERSION ERRORS

IN THE AMPLIFICATION FACTOR

Express the complex ampli�cation factor r of (3.4) as r = jrje�i� and the exact ampli�cation

factor re = e�i�. Then, for j�� �j and
���jrj � 1

��� small, we have
���r � re

���2 = ��jrj e�i� � e�i�
��2

=
���jrj e�i(���) � 1

���2

=
���jrj [1� i(�� �) + � � �]� 1

���2
= (jrj � 1)

2
+ (�� �)

2
+ � � �

Thus, jr � rej2 represents the total of the amplitude and phase errors.

APPENDIX B: OPTIMIZATION VIEWED AS PRESERVING THE FREQUENCY

In section 4, the optimization is carried out by minimizing the di�erence of the numerical and

the exact ampli�cation factors. This actually minimizes the total of dissipation and dispersion

errors as shown in Appendix A. In this appendix, a di�erent view is o�ered for the optimization

process used in section 4. We show that minimizing integral (4.1) also preserves the frequency in

12



the time integration. As such the LDDRK scheme is dispersion relation preserving in the sense of

[12].

By (6.1) for linearized problems, it is easy to show that the Runge-Kutta scheme leads to

U(tn + �t) � U(tn) + c1�t
@U

@t
(tn) + c2�t

2@
2U

@t2
(tn) + � � � � � �+ cp�t

p@
pU

@tp
(tn) (B1)

where ci are identical to the coe�cients of the ampli�cation factor (3.4). This will be true regardless

of the particular form of partial di�erential equations concerned. The above relation only involves

the time derivatives of the solution.

Upon replacing tn by t and applying Laplace transforms on both sides of (B1), it is found that

L.H.S.
1

2�

Z 1

0
U(t+ �t)ei!tdt = e�i!�t ~U (B2)

R.H.S.
1

2�

Z 1

0
[U(t) + c1�t

@U

@t
(t) + c2�t

2@
2
U

@t2
(t) + � � � � � �+ cp�t

p@
p
U

@tp
(t)]ei!tdt

= [1 + c1(�i!�t) + c2(�i!�t)2 + � � � � � �+ cp(�i!�t)p] ~U (B3)

where ~U is the Laplace transform of U (For simplicity, we assume that U = 0 for t � �t). Next

we express

1 + c1(�i!�t) + c2(�i!�t)2 + � � � � � �+ cp(�i!�t)p � e�i!��t (B4)

(B4) equals to the ampli�cation factor r in (3.4) when ! is replaced by ck�. By comparing (B4)

and (B2), it is seen that !� represents the numerical frequency in the Runge-Kutta time integration

scheme. By replacing ck� with ! in r and re, we have

jr� rej2 =
���e�i!��t � e�i!�t

���2 = ���e�i(!��t�!�t) � 1
���2 � ���!��t � !�t

���2 (A5)

for
���!��t� !�t

��� small. From above, it is easy to see that the optimization integral (4.1) results in

the preservation of the frequency.
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Figure 1. Numerical wave number k��x v.s. the actual wave number k�x for several high-order

�nite di�erence schemes. ||| 5-point 4th-order [7], | | | 7-point 4th-order [13], || ||

|| 9-point 6th-order, - - - - - - 11-point 6th-order, | - | - | 5-point compact [11].
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Figure 2. Stability foot-prints of the 3rd-order (rk3) and 4th-order (rk4) schemes. � is the eigenvalue

of the linearized operator F in (3.1). Indicated are the stability limits on the imaginary axis.
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Figure 3. Numerical examples of the convective wave equation @u=@t+ @u=@x = 0. The classical

4-stage 4th-order Runge-Kutta scheme is used. A 9-point central di�erence scheme has been used

for the spatial discretization. - - - - - - exact, |�| numerical. t=400.
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Figure 4. Dissipation and phase errors of the classical 3-stage 3rd-order (rk3) and 4-stage 4th-order

(rk4) Runge-Kutta schemes. L and R are the accuracy and stability limits, respectively.
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Figure 5. Dissipation and phase errors of the optimized schemes. Dotted line is the un-optimized

scheme. (a) and (b) : 4-stage; (c) and (d) : 5-stage; (e) and (f) : 6-stage.
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Figure 6. Dissipation and phase errors of the optimized 4th-order two step alternating schemes.

(a) and (b) : 4-6 scheme; (c) and (d) : 5-6 scheme.
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Figure 7. Stability foot-prints of the optimized schemes. (a) single step, (b) 4th-order two step

alternating schemes. Indicated are the stability limits on the imaginary axis.
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Figure 8. Numerical examples of the convective wave equation using optimized schemes. - - - - - -

exact, |�| numerical. t=400.
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Figure 9. Numerical examples of an acoustic pulse re
ected by a solid wall at y = 0. Plotted are

the pressure contours at �0.1, �0.05, �0.01, �0.005. Numerical boundaries are x = �100 and

y = 0, y = 200.
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Figure 10. Pressure pro�les along x = 0. o numerical, || exact.
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